
INSTALLING PYTHON
THE JOY OF TOOLCHAINS

The Ion Simulator Script is written in a programming language called Python. Python
is a free, general purpose programming language and is used to work with web
servers, make games, automate tasks, control robots, and is used by many scientists,
including mass spectrometrists, to analyze their data. Python does not come with
many programming libraries by default. Programming libraries are collections of
code imported into a programming project that add additional functionality to the
program. For instance, the “NumPy” library (also referred to as the “numpy” or “np”
library) is a Python library that works with numbers (Numerical Python) and adds
matrix math and linear algebra algorithms to Python. A “distribution” of Python
called Anaconda comes with a lot of libraries for scientists, including NumPy. I
recommend installing the Anaconda distribution of Python from:

https://www.anaconda.com/products/individual

On the Anaconda download webpage, click “Download.” The browser should
automatically scroll to the bottom of the page and present options for downloading
Anaconda for Win-dows, MacOS, and Linux in both 64-bit and 32-bit versions.
Unless you are working on a very old computer (>10 years old), you likely have a 64-
bit operating system and should use the 64-bit option for the installer. Choose
whichever operating system you are using (Windows, MacOS or Linux). Note:
Continuum (the company that makes Anaconda) sells distributions of Anaconda to
companies. As you are not a company, you are free to install Anaconda without
paying. Everything needed for running the Ion Simulator Script is free.

Wait until the Anaconda installer has downloaded and click the installer to install it.
Go through the install guide and use the default settings. Anaconda should begin
installing. This might take a few minutes.

When Anaconda has �nished installing, you should be able to open the “Anaconda
Navigator”. Windows users can open the Anaconda Navigator by clicking on the
“start” icon and typing “Anaconda” which should show the Navigator. Open the
Anaconda Navigator which should look like:

https://www.anaconda.com/products/individual


Although Anaconda comes with many libraries, including NumPy and Matplotlib (a
library we will be using for generating plots), it does not come with the “OpenCV”
library that provides some very useful image processing functions. In order to install
the “OpenCV”, please launch either the “CMD.exe” prompt or the “Powershell”
prompt from the Anaconda Navigator. If you are using Linux or MacOS, there might
be a different set of launchers, one of which should be something like “Terminal” or
“Command Line”. The window you should see should look something like (although
the background color might be different):



To test if things are working correctly, consider typing:

python --version

into the prompt. You should see a read back that is something like “Python 3.8.5” or
Python followed by a slightly different number. This shows that Python is
understood as a command. To install OpenCV, type:

pip install opencv-python

This should install the OpenCV library.

SPYDER
MATLAB LITE

Now that the OpenCV library is installed, close the terminal window and go to the
Anaconda Navigator. One of the launchers should be for “Spyder”, which is an
integrated development environment for Python. Launch Spyder.

You should see a window with a few sub-sections open. Close any popups that open
until you see a screen that looks like:



The colors might be “light” themed instead of “dark” themed as they are in this
image.

The left side of Spyder lets you look at a Python �le (like the
“ion_simulator_script.py” �le). Open that �le in Spyder by clicking on “File” in the
top-left corner, and then clicking on “Open” in the File submenu. Navigate to
wherever you extracted the zip folder that this readme is in and select the
“ion_simulator_script.py” �le. The �le should load and you should see a new tab on
the left with lots of colored text.

RUNNING THE ION SIMULATION SCRIPT
SIMULATING IONS: THE GOOD PARTS

Now that Spyder should be properly con�gured, you should be able to run the Ion
Simulation Script by either clicking the green “run” triangle in the top-left side of the
menu bar, or by pressing “F5” on your keyboard. In either case, you should see an
output in the “console” (bottom-right) pane of the Spyder program and your
window state should look something like:



You may or may not see a plot appear. If you look at the output of the console in the
bottom-right pane, you should see “Simulation completed successfully!”. If you do,
then everything worked! However, Spyder uses “Interactive” Python, or IPython,
consoles. Although they can be very nice, these consoles prevent popout plots. To
enable popout plotting (to better see the results of our simulations), consider
clicking on the “Console” part of the Spyder program (the bottom-right pane) and
typing in the prompt:

%matplotlib auto

You should see some response such as “Using matplotlib backend: Qt5Agg”. If you re-
run the script, there should be a popup window that appears. The popup window
might be hidden behind other windows, so check the taskbar to see if there is a new
icon that might be the popup window. In the popup window you should see two
plots (you should be able to resize the popup window for better viewing):



The left plot shows the image “electrodes.png” the right plot shows the electrical
�elds generated by the electrodes and the “ion_simulation_script.py”. The positive
electric �elds on the right are red or reddish in color. The negative electric �elds on
the right are blue or blueish in color.

There are some lines that start in the lower-center of both plots. These lines continue
to the top of the image. These lines are the paths of ions of different mass-to-charge
(m/z) values. Each line is a different ion that �ew from the bottom-center. The ions
stop �ying if they reach a boundary of the simulation, such as an edge or one of the
electrodes.

The icons for the popout window allow for some interactions with the plots. You can
zoom in on the plots by clicking on the magnifying glass icon and then dragging a
box you might like to zoom into somewhere on the plot. You can also edit some of the
image parameters by clicking on the icon that shows an upwards-trending line. For
instance, you can change the color of the lines that are plotted or even change the
colormap for the electric �elds:



Here, I have zoomed in on the central electrode in the left plot and changed the
colormap of the electric �eld map.

EDITING THE ELECTRODES
PLAYING WITH MS PAINT

Now that we’ve run our �rst simulation, we can edit the electrodes to see how it
affects the simulation! First, we could try adding a green electrode at the top of the
screen to see what might happen. The electrodes are just colors in the
“electrodes.png” �le. Open this image up in your favorite image editor (I will use
Microsoft Paint) and add a horizontal green bar at the top (make sure it is pure green,
just like the strip at the bottom of the “electrodes.png” �le!):

Note: be careful to use a “pencil” tool or one that draws all pixels in exactly the
same color that you are using. A “Marker” or “sprayer” tool might draw the
borders of the pixels in a slightly lighter color, to make the lines look less jagged.
These lighter-colored pixels won’t register as the correct color!



Now that the green electrode has been added, save the edited “electrodes.png” �le (I
generally use the shortcut “ctrl-s” or “cmd-s” as it makes editing faster). Make sure
to save it in the same location and with the same name. Now running the ion
simulation code we see:

The green electrode repelled the ions away and they scattered in different directions!



Since we are simulating positive ions, we could increase the voltage on the red
electrode and try to repel them earlier. To do that, we can go to the
“ion_simulation_script.py” source code on the “Modify Me!” section between lines
64 and 100.

The red electrode is de�ned to be RGB(255, 0, 0). The voltage value for is electrode is
80 volts. What happens if we change it to 150 volts? Let’s try it and �nd out!

Most of the ions didn’t make it through and were repelled!

Now that we know how to edit electrodes and how to remove them, let’s try to add a
completely new electrode! First we need to pick a color: I’ll pick black color by going
to Microsoft Paint’s “Edit Colors” menu and choosing a value of RGB(0, 0, 0):



Then I’ll draw something in black. Here is my electrode:

It’s in the center of the red electrodes. I’ll make it negative and try to attract the ions
into it, so they won’t be de�ected away anymore. I’ll try making it -300 volts! So I’ll
go to the ion_simulator_script and de�ne a black color, using my RGB values and add
the “black_electrode” to the dictionary:



Now let’s �y the ions and see if they’re attracted:

It looks like it worked!

We can, of course, delete all these electrodes and try something completely different.
Try it out!

READING THE ION SIMULATION SCRIPT
OR: A CRASH-COURSE IN PYTHON



Now that we know how to alter the script a little bit to change electrodes and how to
change electrodes in Paint, we might want to dive a bit deeper into reading the script
and �guring out how it works. The script should (hopefully) be self-explanatory,
however, knowing some things up front might help.

Three single quotes at the top begin a documentation string or docstring. Docstrings
are usually present at the start of �les or the beginnings of functions to document
what the �le or function does. In this case, the docstring just provides a notice about
the Ion Simulation Script’s authors and attributions. The docstring closes like it
opens, with three single quotes (double quotes can also be used, but then the
docstring must start and end with three double quotes). Docstrings are not code, but
documentation. Python has another type of documentation, or “comments”. The
next type is on line 5. This is a line comment and begins with a pound-sign or
hashmark. This type of comment is generally about the code that follows it. Multiple
lines of a single comment all need to start with a “#”. A “#” tells the Python
interpreter (a program that reads the script �le one line at a time, much like a person
does, but then goes and runs the program, one line at a time) to ignore whatever
comes after on that line.

Although learning Python is not needed for understanding the script, understanding
a few key words and concepts might be helpful:

Python has several key words that do special things:
“Import” imports a library, allowing the script to access the libraries code.
“as” creates an alias for something, often an imported library, so that you
can refer to the alias, rather than the (usually longer) name of the library
“def” begins a function de�nition
“for” and “while” begin for and while loops, respectively
“in” checks a collection for something
“return” exits a function and causes the function to output whatever
comes after “return” on the same line
“if” does something if a condition is correct (e.g., if a number is 1, then add
10 to it)
“else” does something if the “if” condition is incorrect (e.g., if a number is
1, then add 10 to it, else subtract 5 from it)
“break” breaks out of a loop
“continue” skips to the next cycle or iteration of a loop

Numbers in Python can be integers (no decimal places) or �oats (with decimal
places). Math between these two types of numbers is easy and usually ends up



with a �oat (1 + 1.5 = 2.5) because decimal points are conserved.
Numbers can optionally have underscores to visually separate thousands-
places
Numbers can be expressed in scienti�c notation (1e5 is 10,000)

Addition (+), subtraction (-), multiplication (*) and division (/) are intuitive
and Python can even be used as a simple calculator.
Strings are “strings” of letters like 'Hello' they can start and end with either
double or single quotes (but the start and ending quotes must match).
Lists are a collection type that can hold multiple strings or numbers (or both)
(or even other lists). Lists are denoted with square brackets:

[5, 'Hello', 3.5]

Dictionaries hold collections of pairs of things and can be used to “look up” a
“value” by its “key”. Keys are usually strings, values can be strings, numbers,
lists, or even dictionaries! Dictionaries are denoted with curly braces:

{ 'Hello': 2, 'Goodbye':10 }

Variables (collections of letters) are declared with a single equals sign and
usually represent an number, a string, or a collection of numbers and strings:

A = 5
B = “Hello”
C = [5, “Hello”, 3.5]
electrodes = { '100,100,150': 5_000, '0,0,0': -1_500 }

Variables can be used instead of the actual numbers or strings:
A = 5
B = 10
C = A + B #(C would be 15)

Functions are subroutines that usually take inputs and give outputs (through
the return keyword). The inputs are given in parentheses () and then a colon
starts the function. The “body” of a function is indented one level:

def make_cake(eggs, butter, �our, milk, sugar):
    … (do stuff)
    return cake

Functions are called in a similar way to how they are de�ned. A variable often is
assigned to the result of the function:

Eggs = 10
Butter = 'cold'
good_cake = make_cake(eggs, butter, �our, milk, sugar)

Some functions are built in (like the print function or the round function) most
functions are de�ned in the script itself. Some functions come from the



libraries. Functions that come from libraries always start with the library name
and a period. So “np.max” is the maximum function from the numpy library
(that has been imported “as” “np”)
A double-equals sign (==) checks to see if something is equal to something else:

If x == 2:
    dish = make_cake(eggs, butter, �our, milk, sugar)
else:
    dish = make_pie(eggs, butter �our, milk, sugar, fruit)

Greater-than (>) and lesser-than (<)are similar to the double-equals sign (but
for greater-than and lesser-than)
The “print” function is built-in and prints out messages to the console:

print('Hello world!') #Would print out “Hello world!”

A “for” loop loops through a collection:
colors = ['red', 'green', 'blue', 'black']
for color in colors:
    print(color)
(this would print out “red”, then “green”, then “blue”, then “black”)

Although this list is not comprehensive of Python, (or even comprehensive for the Ion
Simulator Script), understanding how the concepts work should make reading the
code easier and improve understanding.

ADDITIONAL IDEAS AND CONCEPTUAL
QUESTIONS
STUFF THAT’S LIKELY TO BE ON THE TEST

After reading the Ion Simulation Script source code, you should be ready to answer
some questions or think about things such as:

How could we extend this script to do 3D simulations? What would need to
change? Would it be more dif�cult to generate the electric �elds or to �y the
ions in 3D? Could we still use MS Paint to make the electrodes?
Although this script is simulating an einzel lense, could it be used to simulate
other kinds of lenses or even full mass spectrometers? If so, which kinds? Would
you need to do any source-code modi�cation, or could you simulate another
kind of mass spectrometer through only modifying electrodes?
How would you go about turning the output x-coordinates, y-coordinates, and
times into a mass spectrum? Does this simulation have a “resolving power” or
is it in�nite? How could we simulate the resolving power of a TOF mass



spectrometer? What could we do to try to “improve” that TOF’s resolving
power?
We �y ions one at a time in the loop. What assumptions does this make? When
might simulating multiple ions simultaneously give more accurate results than
simulating single ion �ights? What problems might single ion simulations
cause when adapting our simulations to the real-world?


