INSTALLING PYTHON

THE JOY OF TOOLCHAINS

The Ion Simulator Script is written in a programming language called Python. Python
is a free, general purpose programming language and is used to work with web
servers, make games, automate tasks, control robots, and is used by many scientists,
including mass spectrometrists, to analyze their data. Python does not come with
many programming libraries by default. Programming libraries are collections of
code imported into a programming project that add additional functionality to the
program. For instance, the “NumPy” library (also referred to as the “numpy” or “np”
library) is a Python library that works with numbers (Numerical Python) and adds
matrix math and linear algebra algorithms to Python. A “distribution” of Python
called Anaconda comes with a lot of libraries for scientists, including NumPy. I

recommend installing the Anaconda distribution of Python from:
https://mwww.anaconda.com/products/individual

On the Anaconda download webpage, click “Download.” The browser should
automatically scroll to the bottom of the page and present options for downloading
Anaconda for Win-dows, MacOS, and Linux in both 64-bit and 32-bit versions.
Unless you are working on a very old computer (>10 years old), you likely have a 64-
bit operating system and should use the 64-bit option for the installer. Choose
whichever operating system you are using (Windows, MacOS or Linux). Note:
Continuum (the company that makes Anaconda) sells distributions of Anaconda to
companies. As you are not a company, you are free to install Anaconda without

paying. Everything needed for running the Ion Simulator Script s free.

Wait until the Anaconda installer has downloaded and click the installer to install it.
Go through the install guide and use the default settings. Anaconda should begin

installing. This might take a few minutes.

When Anaconda has finished installing, you should be able to open the “Anaconda
Navigator”. Windows users can open the Anaconda Navigator by clicking on the
“start” icon and typing “Anaconda” which should show the Navigator. Open the

Anaconda Navigator which should look like:

https://www.anaconda.com/products/individual

Help
ra —
{_) ANACONDA NAVIGATOR
o Applications on base (root) - Charinels Refresh
0 Environments ~
o 2 o
0 . N v s
g Learning P\ ~ -
~
- Community CMD.exe Prompt Datalore IBM Wakson Studie Cloud
K
0.1
Hun g cmelexe Lerminal with your current Cnline Cata Analysis Tool with smark coding B whatson Stadio Cloud provides you the

cnviranment From Navigator activated assistance by JetBrains. Cdit and run your reols to analyze and visualize data, to cleanse
Iython noteboaks in the cloud and share andl shape data, to create and train machine
thiem with wour team. learning madels, Prepare data and build

maodels, wsing apen source data science toals
ANACONDA Launch suriel

or visual modelina,

* =
® L
—_— &
Discavar premium data JUpyTE‘I‘ .Q'.
E sCicnce content a
| .v L
JupyterLab Motebook Powershell Prompt
H Documentarian
ERA 6.1 0.0.1
A An extensitle environment For interactive Wik based, interactive computing noteback Run a Powershell terminal with your current
Anacondds Blog i . - ! . -
anel reprocucible computing, based an the enviranment. AIEand run kuman-readable snvironment From Mavigatar activated
Jupyter Notebook and Architecture, docs while descriting the data analysis
Vi - v
¥y o ¢
R I " P

Although Anaconda comes with many libraries, including NumPy and Matplotlib (a
library we will be using for generating plots), it does not come with the “OpenCV”
library that provides some very useful image processing functions. In order to install
the “OpenCV”, please launch either the “CMD.exe” prompt or the “Powershell”
prompt from the Anaconda Navigator. If you are using Linux or MacOS, there might
be a different set of launchers, one of which should be something like “Terminal” or
“Command Line”. The window you should see should look something like (although

the background color might be different):

J [©3] C\Windows\system32\cmd.exe

Microsoft Windows [Version 10.9.19042.746]
(c) 20828 Microsoft Corporation. All rights reserved.

(base) C:\Users\igman>_

To test if things are working correctly, consider typing:
python --version

into the prompt. You should see a read back that is something like “Python 3.8.5” or
Python followed by a slightly different number. This shows that Python is

understood as a command. To install OpenCYV, type:
pip install opencv-python

This should install the OpenCV library.

SPYDER

MATLAB LITE

Now that the OpenCYV library is installed, close the terminal window and go to the
Anaconda Navigator. One of the launchers should be for “Spyder”, which is an

integrated development environment for Python. Launch Spyder.

You should see a window with a few sub-sections open. Close any popups that open

until you see a screen that looks like:

O temp.py

1 ¥ -*- coding: utf-8 -*- Usage

Spyder Editor Here you can get help of any object by pressing Ctrl+1 in front of
it, either on the Editor or the Console.
also be shown automatically after writing
an object. You can activate thi

This is a temporary script file.

New to Spyder? Read our tutorial

Variable explorer [Help) Plots Files
3 Console 1/A

Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)]
Type "copyright”, "credits” or "license” for more information.

IPython 7.19.0 -- An enhanced Interactive Python.

In [1]

History

) Linel,Coll UTF8 CRLF RW Mem80%

The colors might be “light” themed instead of “dark” themed as they are in this

image.

The left side of Spyder lets you look at a Python file (like the
“jon_simulator_script.py” file). Open that file in Spyder by clicking on “File” in the
top-left corner, and then clicking on “Open” in the File submenu. Navigate to
wherever you extracted the zip folder that this readme is in and select the
“jon_simulator_script.py” file. The file should load and you should see a new tab on
the left with lots of colored text.

RUNNING THE ION SIMULATION SCRIPT

SIMULATING IONS: THE GOOD PARTS

Now that Spyder should be properly configured, you should be able to run the Ion
Simulation Script by either clicking the green “run” triangle in the top-left side of the
menu bar, or by pressing “F5” on your keyboard. In either case, you should see an
output in the “console” (bottom-right) pane of the Spyder program and your

window state should look something like:

A Usage
Adapted in 202 Ian Anthony from MATLAB code written by Matthew Brantley
A compani to https://igmanthony.com/fields-ions-optics/ Here you can get help of any object by pressing Ctrl+1 in front of
This script s not implement some of the features found in the Simulation it, either on the Editor or the Console.
Playground of the Simulating Fields, Ions, and Optics website and is e ook erm ey i e ol
optimized for simplicity and readability, rather than performance. However, parenthesis next to an object. You can activate this behavior in
the steps this script uses are almost identical, for static lenses, in the Preferences > Help.
generation and flight of ions, so results should be largely comparable
New to Spyder? Read our tutorial

nformation on using or reading this script, please consult the

ne.pdf" file or the page at
://igmanthony. con/fields-ions-optics/python_simulation_readme.html

1 lib

Variable explorer Help| Plots Files

[|Console 1/A ms =

In [1]: runfile('C:/Users/igman/Desktop/ion_simulator_script.py', wdir='C:/Users/igman/
Desktop')

Making the electric fields. Please wait...

Flying an ion. Please wait...

SPLAT! 20.389 us; position: [100.02612811 ©.99516089]
Flying an ion. Please wa

SPLAT! 20.361 us; positi . 0.99154043]
Flying an ion. Please wa ..

SPLAT! 20.364 us; posit: 9.58709393 ©.98745764]
Flying an ion. Please wa

SPLAT! 20.392 us; posit: 8.45495611 ©.9948515]
Flying an ion. Please wait...

SPLAT! 20.427 us; position: [96.45600631 0.98645331]

The start of this script. “start" coordinates the simulation; it calls
other functions and:

- Assigns volages to the different-colored electrodes

- Makes ions

- Loads the png image of electrodes (“electrodes.png"

- Generates the electric field from the png image of the electrodes

- Flies the ions in the electric field

- Plots the resulting ion flight paths

Figures now render in the Plots pane by default. To make them also appear inline in the
Console, uncheck "Mute Inline Plotting" under the Plots pane options menu.

Simulation completed successfully

In [2]

< LSP Python: ready @ conda: , Col A RW Mem 77%

You may or may not see a plot appear. If you look at the output of the console in the

bottom-right pane, you should see “Simulation completed successfully!”

.If you do,
then everything worked! However, Spyder uses “Interactive” Python, or IPython,
consoles. Although they can be very nice, these consoles prevent popout plots. To
enable popout plotting (to better see the results of our simulations), consider
clicking on the “Console” part of the Spyder program (the bottom-right pane) and

typing in the prompt:
%matplotlib auto

You should see some response such as “Using matplotlib backend: Qt5Agg”. If you re-
run the script, there should be a popup window that appears. The popup window
might be hidden behind other windows, so check the taskbar to see if there is a new
icon that might be the popup window. In the popup window you should see two

plots (you should be able to resize the popup window for better viewing):

A€EI PQA=XD

lon paths Electric field
|

Volts

The left plot shows the image “electrodes.png” the right plot shows the electrical
fields generated by the electrodes and the “ion_simulation_script.py”. The positive
electric fields on the right are red or reddish in color. The negative electric fields on

the right are blue or blueish in color.

There are some lines that start in the lower-center of both plots. These lines continue
to the top of the image. These lines are the paths of ions of different mass-to-charge
(m/z) values. Each line is a different ion that flew from the bottom-center. The ions
stop flying if they reach a boundary of the simulation, such as an edge or one of the
electrodes.

The icons for the popout window allow for some interactions with the plots. You can
zoom in on the plots by clicking on the magnifying glass icon and then dragging a
box you might like to zoom into somewhere on the plot. You can also edit some of the
image parameters by clicking on the icon that shows an upwards-trending line. For
instance, you can change the color of the lines that are plotted or even change the

colormap for the electric fields:

ﬂ‘(’" ‘*’QEM Zoom rect|

Electric field

lon paths

Volts

I |

Here, I have zoomed in on the central electrode in the left plot and changed the

colormap of the electric field map.

EDITING THE ELECTRODES

PLAYING WITH MS PAINT

Now that we’ve run our first simulation, we can edit the electrodes to see how it
affects the simulation! First, we could try adding a green electrode at the top of the
screen to see what might happen. The electrodes are just colors in the
“electrodes.png” file. Open this image up in your favorite image editor (I will use
Microsoft Paint) and add a horizontal green bar at the top (make sure it is pure green,

just like the strip at the bottom of the “electrodes.png” file!):

Note: be careful to use a “pencil” tool or one that draws all pixels in exactly the
same color that you are using. A “Marker” or “sprayer” tool might draw the
borders of the pixels in a slightly lighter color, to make the lines look less jagged.

These lighter-colored pixels won’t register as the correct color!

M JBA lcd NvOoOO - 7 ouine
Hife b o "; YN
aste et o per | @ AR Bhes S BT
Clipboard

Image

- Size | Color | Color
- 1 2
Tools Shapes

[
[]

(]
o |
o
.
C

u

10 200 x 200px Size: 1.0KB

600% (2]

Now that the green electrode has been added, save the edited “electrodes.png” file (I
generally use the shortcut “ctrl-s” or “cmd-s” as it makes editing faster). Make sure

to save it in the same location and with the same name. Now running the ion
simulation code we see:

Q Figure 1

A€» PQE=XA

— O

X=120.9 y=25.4]
[255, 255, 255]|

lon paths

\

Electric field
\
\

] -

| wioe i

100

The green electrode repelled the ions away and they scattered in different directions!

Since we are simulating positive ions, we could increase the voltage on the red
electrode and try to repel them earlier. To do that, we can go to the
“ion_simulation_script.py” source code on the “Modify Me!” section between lines
64 and 100.

The red electrode is defined to be RGB(255, 0, 0). The voltage value for is electrode is
80 volts. What happens if we change it to 150 volts? Let’s try it and find out!

“ Figure 1 — (]

AEI PQ=r B

lon paths
— Electric field

Most of the ions didn’t make it through and were repelled!

Now that we know how to edit electrodes and how to remove them, let’s try to add a
completely new electrode! First we need to pick a color: I’ll pick black color by going

to Microsoft Paint’s “Edit Colors” menu and choosing a value of RGB(0, 0, 0):

Edit Colors

EEEEET

Custom colors:

T ANEENEN
T AEEEE
T FAANEN
T ANEENT
B |

1]
1]
Bk

Hue[0 | Rea[0 |
Sat: D Green: El
Define Custom Colors >> Color[Solid | |- D Blue: El
Cancel Add to Custom Colors

Then I'll draw something in black. Here is my electrode:

Dem Tead axoe i S MO FIERRERER W
sl U S B S e tuile = B TTT P

[1 1] 200 x 200px Size: 1.0KB 600% (=) | BNE)

It’s in the center of the red electrodes. I'll make it negative and try to attract the ions
into it, so they won’t be deflected away anymore. I’ll try making it -300 volts! So I’'ll
go to the ion_simulator_script and define a black color, using my RGB values and add
the “black_electrode” to the dictionary:

£ Spyder (Python 3.8)
nsoles Projects Tools View Help
EI D

imulator_scrip

oin(script_directory, image_name) Usage

the image as a numpy array of olo
cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB) Here you can get help of any object by pressing Ctrl+1 in front of
t in T m it, either on the Editor or the Console.
rning the ¢ S & ne € Help can also be shown automatically after writing a left
k parenthesis next to an object. You can activate this behavior in
Preferences > Help.

New to Spyder? Read our tutorial

red_electrode = rgb_to_integer(255, 0, 0)
green_electrode = rgb_to_integer(@, 255, 0)
blue_electrode = rgb_to_integer(0, 0, 255)
black_electrode teger(0, 0, 0)
s all t ore

Variable explorer |Help Plots Files
v g [| Console 2/A
lectrods
€ ecr;: :iectf-ode- 150 red ele Python 3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)]
reen¥clcer oeiion s oc Type "copyright®, “credits” or "license” for more information.
blue_electrod: #
black electrode IPython 7.19.0 -- An enhanced Interactive Python.
i S : il £ the
y r h In [1]

‘position’: [100, 195], : [-250, 11},
‘position': [100, 195], 4 [-100, 11},
‘position': [100, 195], ' 1 [0.5, 1]},
‘position': [100, 195], ‘'velocity [1e0, 1]},
‘position': [100, 195], ‘velocity [250, 1]},

TPython console History
< LSP Python: ready @ conda: base (Python 3.8.5) Line82, Col31 ASCI CRIF RW Mem 79%

Now let’s fly the ions and see if they’re attracted:

AE>I PQENM

lon paths
Electric field 150

Volts

100

It looks like it worked!
We can, of course, delete all these electrodes and try something completely different.

Try it out!

READING THE ION SIMULATION SCRIPT

OR: A CRASH-COURSE IN PYTHON

Now that we know how to alter the script a little bit to change electrodes and how to
change electrodes in Paint, we might want to dive a bit deeper into reading the script
and figuring out how it works. The script should (hopefully) be self-explanatory,

however, knowing some things up front might help.

Three single quotes at the top begin a documentation string or docstring. Docstrings
are usually present at the start of files or the beginnings of functions to document
what the file or function does. In this case, the docstring just provides a notice about
the Ion Simulation Script’s authors and attributions. The docstring closes like it
opens, with three single quotes (double quotes can also be used, but then the
docstring must start and end with three double quotes). Docstrings are not code, but
documentation. Python has another type of documentation, or “comments”. The
next type is on line 5. This is a line comment and begins with a pound-sign or
hashmark. This type of comment is generally about the code that follows it. Multiple
lines of a single comment all need to start with a “#”. A “#” tells the Python
interpreter (a program that reads the script file one line at a time, much like a person
does, but then goes and runs the program, one line at a time) to ignore whatever

comes after on that line.

Although learning Python is not needed for understanding the script, understanding
a few key words and concepts might be helpful:

o Python has several key words that do special things:
o “Import” imports a library, allowing the script to access the libraries code.

o “as” creates an alias for something, often an imported library, so that you
can refer to the alias, rather than the (usually longer) name of the library

o “def” begins a function definition

o “for” and “while” begin for and while loops, respectively

o “in” checks a collection for something

o “return” exits a function and causes the function to output whatever
comes after “return” on the same line

o “if” does something if a condition is correct (e.g., if a number is 1, then add
10 to it)

o “else” does something if the “if” condition is incorrect (e.g., if a number is
1, then add 10 to it, else subtract 5 from it)

o “break” breaks out of a loop

o “continue” skips to the next cycle or iteration of a loop

e Numbers in Python can be integers (no decimal places) or floats (with decimal

places). Math between these two types of numbers is easy and usually ends up

with a float (1 + 1.5 = 2.5) because decimal points are conserved.
o Numbers can optionally have underscores to visually separate thousands-

places

o Numbers can be expressed in scientific notation (le5 is 10,000)

Addition (+), subtraction (-), multiplication (*) and division (/) are intuitive
and Python can even be used as a simple calculator.
Strings are “strings” of letters like 'Hello' they can start and end with either
double or single quotes (but the start and ending quotes must match).
Lists are a collection type that can hold multiple strings or numbers (or both)
(or even other lists). Lists are denoted with square brackets:

o [5,'Hello', 3.5]
Dictionaries hold collections of pairs of things and can be used to “look up” a
“value” by its “key”. Keys are usually strings, values can be strings, numbers,
lists, or even dictionaries! Dictionaries are denoted with curly braces:

o {'Hello": 2, 'Goodbye":10 }
Variables (collections of letters) are declared with a single equals sign and

usually represent an number, a string, or a collection of numbers and strings:
o A = 5

o B=“Hello”

o C=[5,“Hello”, 3.5]

o electrodes = { '100,100,150": 5_000, '0,0,0": -1_500 }
Variables can be used instead of the actual numbers or strings:

o A=5

o B=10

o C=A+B#(Cwould be 15)

Functions are subroutines that usually take inputs and give outputs (through
the return keyword). The inputs are given in parentheses () and then a colon

starts the function. The “body” of a function is indented one level:
o def make_cake(eggs, butter, flour, milk, sugar):

o ... (do stuff)

o return cake

Functions are called in a similar way to how they are defined. A variable often is

assigned to the result of the function:
o Eggs=10

o Butter ="cold'

o good_cake = make_cake(eggs, butter, flour, milk, sugar)

Some functions are built in (like the print function or the round function) most

functions are defined in the script itself. Some functions come from the

libraries. Functions that come from libraries always start with the library name

and a period. So “np.max” is the maximum function from the numpy library

np”)

o A double-equals sign (==) checks to see if something is equal to something else:
o Ifx==2:

» «

(that has been imported “as

o dish = make_cake(eggs, butter, flour, milk, sugar)
o else:
o dish = make_pie(eggs, butter flour, milk, sugar, fruit)
e Greater-than (>) and lesser-than (<)are similar to the double-equals sign (but
for greater-than and lesser-than)
e The “print” function is built-in and prints out messages to the console:
o print('Hello world!") #Would print out “Hello world!”
e A“for” loop loops through a collection:
o colors = ['red', 'green', 'blue’, 'black’]
o for color in colors:
o print(color)

o (this would print out “red”, then “green”, then “blue”, then “black”)

Although this list is not comprehensive of Python, (or even comprehensive for the Ion
Simulator Script), understanding how the concepts work should make reading the

code easier and improve understanding.

ADDITIONAL IDEAS AND CONCEPTUAL
QUESTIONS

STUFF THAT'S LIKELY TO BE ON THE TEST

After reading the Ion Simulation Script source code, you should be ready to answer

some questions or think about things such as:

e How could we extend this script to do 3D simulations? What would need to
change? Would it be more difficult to generate the electric fields or to fly the
ions in 3D? Could we still use MS Paint to make the electrodes?

o Although this script is simulating an einzel lense, could it be used to simulate
other kinds of lenses or even full mass spectrometers? If so, which kinds? Would
you need to do any source-code modification, or could you simulate another
kind of mass spectrometer through only modifying electrodes?

e How would you go about turning the output x-coordinates, y-coordinates, and
times into a mass spectrum? Does this simulation have a “resolving power” or

is it infinite? How could we simulate the resolving power of a TOF mass

spectrometer? What could we do to try to “improve” that TOF’s resolving
power?

e We flyions one at a time in the loop. What assumptions does this make? When
might simulating multiple ions simultaneously give more accurate results than
simulating single ion flights? What problems might single ion simulations

cause when adapting our simulations to the real-world?

